简介

启用公式

本主题支持mathjaxkatex两大渲染引擎,您可以在博客主题设置latexenable: true启用。

更换渲染器

由于Hexo本身渲染器的冲突,有一部分公式无法渲染,建议采用其他渲染器,首先

npm uninstall hexo-renderer-marked -S

之后mathjax推荐hexo-renderer-kramedkatex推荐hexo-renderer-markdown-it-plus

npm install hexo-renderer-kramed -S
npm install hexo-renderer-markdown-it-plus -S

注意,您只可以保留一个渲染器

演示

以下所有公式均通过katex渲染

整行公式

f(a)=12πif(z)zadzf(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz

cos(θ+ϕ)=cos(θ)cos(ϕ)sin(θ)sin(ϕ)\cos(\theta+\phi)=\cos(\theta)\cos(\phi)−\sin(\theta)\sin(\phi)

D(F)dV=DFndS\int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS

×F=(FzyFyz)i+(FxzFzx)j+(FyxFxy)k\vec{\nabla} \times \vec{F} =\left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i}+ \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j}+ \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}

σ=1Ni=1N(xiμ)2\sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2}

(XY)k=Xi(iY)k=Xi(Ykxi+ΓimkYm)(\nabla_X Y)^k = X^i (\nabla_i Y)^k =X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right)

行内公式

求根公式是x=b±b24ac2ax = {-b \pm \sqrt{b^2-4ac} \over 2a}

E=mc2E=mc^2是智能方程式

对于一个序列a1,a2,,ama_1,a_2,\cdots,a_m,有a1+a2++am=2(a1a2am)a_1+a_2+\cdots+a_m=2\cdot(a_1\oplus a_2\oplus\cdots\oplus a_m)